A fast multipole method for stellar dynamics
نویسنده
چکیده
The approximate computation of all gravitational forces between N interacting particles via the fast multipole method (FMM) can be made as accurate as direct summation, but requires less thanO (N) operations. FMM groups particles into spatially bounded cells and uses cell-cell interactions to approximate the force at any position within the sink cell by a Taylor expansion obtained from the multipole expansion of the source cell. By employing a novel estimate for the errors incurred in this process, I minimise the computational effort required for a given accuracy and obtain a well-behaved distribution of force errors. For relative force errors of∼ 10–7, the computational costs exhibit an empirical scaling of∝ N0.87. My implementation (running on a 16 core node) out-performs a GPU-based direct summation with comparable force errors for N 105.
منابع مشابه
A New Technique for the Calculation of Colliding Vortex Rings
The present study involves a novel computational technique, regarding simultaneous use of the pseudo particle method, Poisson integral method and a special-purpose computer originally designed for molecular dynamics simulations (MDGRAPE-3). In the present calculations, the dynamics of two colliding vortex rings have been studied using the vortex method. The present acceleration technique allows...
متن کاملA Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملA genetic programming based learning system to derive multipole and local expansions for the fast multipole method
This paper introduces an automatic learning algorithm based on genetic programming to derive local and multipole expansions required by the Fast Multipole Method (FMM). FMM is a well-known approximation method widely used in the field of computational physics, which was first developed to approximately evaluate the product of particular N × N dense matrices with a vector in O(N log N) operation...
متن کاملThe fast multipole method and point dipole moment polarizable force fields.
We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation ...
متن کاملAn Automatic Learning System to Derive Multipole and Local Expansions for the Fast Multipole Method
This paper introduces an automatic learning method based on genetic programming to derive local and multipole expansions required by the Fast Multipole Method (FMM). FMM is a well-known approximation method widely used in the field of computational physics, which was first developed to approximately evaluate the product of particular N × N dense matrices with a vector in O(N log N) operations. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015